HOMEWORK 7 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

SECTION 3.10: Linear approximations and differentials
3.10.2. $L(x)=\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)$
3.10.11.
(a) $d y=\left(2 x \sin (2 x)+2 x^{2} \cos (2 x)\right) d x$
(b) $d y=\frac{1}{\sqrt{1+t^{2}}}\left(\frac{t}{\sqrt{1+t^{2}}}\right) d t=\frac{t}{1+t^{2}} d t$

3.10.15.

(a) $d y=\frac{1}{10} e^{\frac{x}{10}} d x$
(b) $d y=\frac{1}{10}(0.1)=0.01$
3.10.21. $\Delta(y)=y(5)-y(4)=\frac{2}{5}-\frac{2}{4}=-\frac{1}{10}=-0.1$
$d y=-\frac{2}{4^{2}}(1)=-\frac{1}{8}=-0.125$
3.10.35. $l=2 \pi r=84$, so $r=\frac{84}{2 \pi}=\frac{42}{\pi}$. We know $d l=0.5$, so $2 \pi d r=0.5$, so $d r=\frac{0.5}{2 \pi}=\frac{1}{4 \pi}$
(a) $S=4 \pi r^{2}$, so $d S=8 \pi r d r=8 \pi \frac{42}{\pi} \frac{1}{4 \pi}=\frac{84}{\pi}$. Also the relative error is $\frac{d S}{S}=\frac{8 \pi r d r}{4 \pi r^{2}}=\frac{2 d r}{r}=\frac{1}{2 \pi} \times \frac{\pi}{42}=\frac{1}{84} \approx 0.012$
(b) $V=\frac{4}{3} \pi r^{3}$, so $d V=4 \pi r^{2} d r=4 \pi \frac{42^{2}}{\pi^{2}} \times \frac{1}{4 \pi}=\frac{1764}{\pi^{2}} \approx 179$. Also the relative error is $\frac{d V}{V}=\frac{4 \pi r^{2} d r}{\frac{4}{3} \pi r^{3}}=\frac{3 d r}{r}=\frac{\frac{3}{4 \pi}}{\frac{42}{\pi}}=\frac{3}{168}=\frac{1}{56} \approx 0.018$
3.10.40. $d F=4 k R^{3} d R$, so:

$$
\frac{d F}{F}=\frac{4 k R^{3} d R}{F}=\frac{4 k R^{3} d R}{F}=\frac{4 k R^{3} d R}{k R^{4}}=4 \frac{d R}{R}
$$

And when $\frac{d R}{R}=0.05, \frac{d F}{F}=4(0.05)=0.2$

3.10.43.

(a) $L(x)=f(1)+f^{\prime}(1)(x-1)=5-1(x-1)=6-x$ $f(0.9) \approx L(0.9)=5-(0.9-1)=5.1$
$f(1.1) \approx L(1.1)=5-(1.1-1)=4.9$
(b) Notice that $\left(f^{\prime}\right)^{\prime}(x)<0$, hence $f^{\prime \prime}(x)<0$, so f is concave down (Think for example \sqrt{x}, we'll discuss that more in section 4.3), which means that the linear approximations will be overestimates (in other words, the tangent line to f at 1 will be above the graph of f; again, think of the case \sqrt{x})

[^0]
Chapter 3 - Review

TRUE-FALSE.

(1) TRUE
(2) FALSE
(3) TRUE
(4) TRUE
(5) FALSE $\left(\frac{f^{\prime}(\sqrt{x})}{2 \sqrt{x}}\right)$
(6) FALSE (e^{2} is a constant, so 0$)$
(7) FALSE $\left(y^{\prime}=\ln (10) 10^{x}\right.$, exponential rule)
(8) FALSE $(\ln 10$ is a constant, so 0$)$
(9) FALSE $\left(2 \tan (x) \sec ^{2}(x)\right)$
(10) FALSE $\left((2 x+1) \frac{x^{2}+x}{\left|x^{2}+x\right|}\right.$; Write $\left|x^{2}+x\right|=\sqrt{\left(x^{2}+x\right)^{2}}$ and use the chain rule)
(11) TRUE
(12) TRUE (f is a polynomial of degree 30, so its 31st derivative is 0)
(13) TRUE (By the quotient rule and (11))
(14) FALSE $(y-4=-4(x+2)$; it's not even the equation of a line!)
(15) TRUE $\left(=g^{\prime}(2)=5(2)^{4}=80\right)$

3.R. 68

(a) $\sin (2 x)=2 \sin (x) \cos (x)$
(b) $\cos (x+a)=\cos (x) \cos (a)-\sin (x) \sin (a)$ (The important thing here is that you differentiate with respect to x, leaving a constant)

3.R.87.

$v(t)=s^{\prime}(t)=-A c e^{-c t} \cos (\omega t+\delta)-A \omega e^{-c t} \sin (\omega t+\delta)=-A e^{-c t}(c \cos (\omega t+\delta)+\omega \sin (\omega t+\delta))$
$a(t)=v^{\prime}(t)=A c e^{-c t}(c \cos (\omega t+\delta)+\omega \sin (\omega t+\delta))-A e^{-c t}\left(-c \omega \sin (\omega t+\delta)+\omega^{2} \cos (\omega t+\delta)\right)$
3.R.94. $y(t)=100 \times 2^{-\frac{t}{5.24}}$
(a) $y(20)=100 \times 2^{\frac{-20}{5.24}} \approx 7.1 \mathrm{mg}$
(b) $t=\frac{5.24 \ln (100)}{\ln (2)} \approx 34.81$ years

3.R.99.

(1) $D^{2}=x^{2}+y^{2}$ (Typical Pythagorean theorem problem; Draw a right triangle in the shape of an L, and let x be the bottom side, y be the left-hand-side, and D be the hypothenus)
(2) $2 D \frac{d D}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}$
(3) $x=3 \times 15=45$ (velocity \times time), $y=45+5 \times 3=60$ (initial height + velocity \times time $, \frac{d x}{d t}=15, \frac{d y}{d t}=5$, and $D=\sqrt{x^{2}+y^{2}}=\sqrt{45^{2}+60^{2}}=$ $\sqrt{5625}=75$ which gives:

$$
\frac{d D}{d t}=\frac{45 \times 15+60 \times 5}{75}=13
$$

3.R.101.

(1) $\tan (\theta)=\frac{400}{x}$ (Typical trigonometry-problem. Draw another triangle in the shape of an L, let 400 be the left-hand-side, x be the bottom, and the angle on the right be θ)
(2) $\sec ^{2}(\theta) \frac{d \theta}{d t}=-\frac{400}{x^{2}} \frac{d x}{d t}$
(3) $x=400 \sqrt{3}$ (redraw the same triangle, but this time with $\theta=\frac{\pi}{6}$), $\frac{d \theta}{d t}=$ -0.25 , and $\theta=\frac{\pi}{6}$, which gives:

$$
\frac{d x}{d t}=400
$$

3.R.105. The area of the window is given by $y=x^{2}+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}=\left(1+\frac{\pi}{8}\right) x^{2}$.

Then:

$$
d y=\left(1+\frac{\pi}{8}\right) 2 x d x=\left(1+\frac{\pi}{8}\right)(120)(0.1)=12+\frac{3 \pi}{2} \approx 16.71
$$

3.R.111. $f^{\prime}(2 x)=\frac{x^{2}}{2}$, so $f^{\prime}(x)=\frac{\left(\frac{x}{2}\right)^{2}}{2}=\frac{x^{2}}{8}$

Section 4.1: Maximum and Minimum Values

4.1.6.

- Absolute maximum: Does not exist (NOT 5)
- Absolute minimum: $f(4)=1$
- Local minimum: $f(2)=2, f(4)=1$
- Local maximum: $f(3)=4, f(6)=3$
4.1.7, 4.1.10, 4.1.14. Ask me about that during office hours!
4.7.41. $f^{\prime}(\theta)=-2 \sin (\theta)+2 \sin (\theta) \cos (\theta)$, which gives $\theta=\pi m$ or $\theta=2 \pi m$, which can be just written as $\theta=\pi m$ (m is an integer)
4.7.43. $f^{\prime}(x)=2 x e^{-3 x}-3 x^{2} e^{-3 x}$, which gives $x=0$ and $x=\frac{2}{3}$
4.1.51. $f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x=12 x\left(x^{2}-x-2\right)=12 x(x-2)(x+1)$, which gives $x=-1,0,2$. Candidates: $f(-2)=33, f(3)=28$ (endpoints), $f(0)=1$, $f(-1)=-4, f(2)=-31$. Absolute maximum: $f(-2)=33$, Absolute minimum: $f(2)=-31$
4.1.57. See document 'Solution to 4.1 .57 ' on my website!

[^0]: Date: Friday, October 25th, 2013.

